Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 972: 176551, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38570082

RESUMEN

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.


Asunto(s)
Artritis Reumatoide , Proliferación Celular , Sinoviocitos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Artritis Reumatoide/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Masculino , Hormonas Tiroideas/metabolismo , Artritis Experimental/patología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Movimiento Celular/efectos de los fármacos , Terapia Molecular Dirigida , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
2.
Theranostics ; 14(3): 988-1009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250049

RESUMEN

The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.


Asunto(s)
Lipoilación , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Microglía , Hipotálamo , Metabolismo de los Lípidos , Arteméter
3.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446707

RESUMEN

The root bark of Dictamnus dasycarpus Turcz is a traditional Chinese medicine, Dictamni Cortex (DC), which is mainly used in the clinical treatment of skin inflammation, eczema, rubella, rheumatism, and gynecological inflammation. Unexpectedly, there are some cases of liver injury after the administration of DC. However, the mechanism of hepatotoxicity remains ambiguous. The aim of this study was to explore the mechanism and substance bases of DC hepatotoxicity based on network pharmacology and molecular docking, verified through pharmacological experiments. Partial prototype components and metabolites in vivo of quinoline alkaloids from DC were selected as candidate compounds, whose targets were collected from databases. Network pharmacology was applied to study the potential hepatotoxic mechanism after correlating the targets of candidate compounds with the targets of hepatotoxicity. Molecular docking was simulated to uncover the molecular mechanism. Furthermore, the hepatotoxicity of the extract and its constituents from DC was evaluated in vivo and in vitro. We constructed the "potential toxic components-toxic target-toxic pathway" network. Our results showed that the targets of DC included CYP1A2 and GSR, participating in heterologous steroid metabolism, REDOX metabolism, drug metabolism, heterocyclic metabolic processes, the synthesis of steroid hormone, cytochrome P450 metabolism, chemical carcinogens and bile secretion pathways. In vitro and in vivo experiments displayed that DC could result in a decrease in GSH-Px and oxidative stress, simultaneously inhibiting the expression of CYP1A2 and inducing hepatotoxicity. These results further indicated the mechanism of hepatotoxicity induced by Dictamnus dasycarpus, providing a basic theory to explore and prevent hepatotoxicity in the clinical usage of Dictamnus dasycarpus.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Dictamnus , Medicamentos Herbarios Chinos , Humanos , Dictamnus/química , Simulación del Acoplamiento Molecular , Citocromo P-450 CYP1A2 , Farmacología en Red , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inflamación , Medicamentos Herbarios Chinos/farmacología
4.
Adv Sci (Weinh) ; 10(18): e2206533, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088726

RESUMEN

Osteoblasts play an important role in the regulation of bone homeostasis throughout life. Thus, the damage of osteoblasts can lead to serious skeletal diseases, highlighting the urgent need for novel pharmacological targets. This study introduces chemical genetics strategy by using small molecule forskolin (FSK) as a probe to explore the druggable targets for osteoporosis. Here, this work reveals that transglutaminase 2 (TGM2) served as a major cellular target of FSK to obviously induce osteoblast differentiation. Then, this work identifies a previously undisclosed allosteric site in the catalytic core of TGM2. In particular, FSK formed multiple hydrogen bonds in a saddle-like domain to induce an "open" conformation of the ß-sandwich domain in TGM2, thereby promoting the substrate protein crosslinks by incorporating polyamine. Furthermore, this work finds that TGM2 interacted with several mitochondrial homeostasis-associated proteins to improve mitochondrial dynamics and ATP production for osteoblast differentiation. Finally, this work observes that FSK effectively ameliorated osteoporosis in the ovariectomy mice model. Taken together, these findings show a previously undescribed pharmacological allosteric site on TGM2 for osteoporosis treatment, and also provide an available chemical tool for interrogating TGM2 biology and developing bone anabolic agent.


Asunto(s)
Osteoporosis , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratones , Animales , Femenino , Regulación Alostérica , Osteogénesis , Osteoblastos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
5.
Front Immunol ; 13: 933594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439191

RESUMEN

Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy without any effective preventive measures; therefore, it is necessary to develop a safe and efficacious vaccine against CVB. Immunoinformatics methods are both economical and convenient as in-silico simulations can shorten the development time. Herein, we design a novel multi-epitope vaccine for the prevention of CVB by using immunoinformatics methods. With the help of advanced immunoinformatics approaches, we predicted different B-cell, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes, respectively. Subsequently, we constructed the multi-epitope vaccine by fusing all conserved epitopes with appropriate linkers and adjuvants. The final vaccine was found to be antigenic, non-allergenic, and stable. The 3D structure of the vaccine was then predicted, refined, and evaluated. Molecular docking and dynamics simulation were performed to reveal the interactions between the vaccine with the immune receptors MHC-I, MHC-II, TLR3, and TLR4. Finally, to ensure the complete expression of the vaccine protein, the sequence of the designed vaccine was optimized and further performed in-silico cloning. In conclusion, the molecule designed in this study could be considered a potential vaccine against CVB infection and needed further experiments to evaluate its safety and efficacy.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Humanos , Vacunas de Subunidad , Simulación del Acoplamiento Molecular , Biología Computacional/métodos
6.
Sci Adv ; 8(32): eabo0789, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35947662

RESUMEN

Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.


Asunto(s)
Enfermedades Neurodegenerativas , Ubiquitina Tiolesterasa , Animales , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
7.
Pharmacol Res ; 182: 106309, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716915

RESUMEN

The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/ß-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.


Asunto(s)
Colitis , Interleucina-10 , Animales , Proliferación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Complemento C1q/metabolismo , Complemento C1q/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Glucósidos , Inflamación/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monoterpenos , Células Madre/metabolismo
8.
Pharmacol Res ; 176: 106046, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007708

RESUMEN

Ischemic stroke remains one of the leading causes of death worldwide, thereby highlighting the urgent necessary to identify new therapeutic targets. Deoxyhypusine hydroxylase (DOHH) is a fundamental enzyme catalyzing a unique posttranslational hypusination modification of eukaryotic translation initiation factor 5A (eIF5A) and is highly involved in the progression of several human diseases, including HIV-1 infection, cancer, malaria, and diabetes. However, the potential therapeutic role of pharmacological regulation of DOHH in ischemic stroke is still poorly understood. Our study first discovered a natural small-molecule brazilin (BZ) with an obvious neuroprotective effect against oxygen-glucose deprivation/reperfusion insult. Then, DOHH was identified as a crucial cellular target of BZ using HuProt™ human proteome microarray. By selectively binding to the Cys232 residue, BZ induced a previously undisclosed allosteric effect to significantly increase DOHH catalytic activity. Furthermore, BZ-mediated DOHH activation amplified mitophagy for mitochondrial function and morphology maintenance via DOHH/eIF5A hypusination signaling pathway, thereby protecting against ischemic neuronal injury in vitro and in vivo. Collectively, our study first identified DOHH as a previously unreported therapeutic target for ischemic stroke, and provided a future drug design direction for DOHH allosteric activators using BZ as a novel molecular template.


Asunto(s)
Benzopiranos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Oxigenasas de Función Mixta/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Benzopiranos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Embarazo , Procesamiento Proteico-Postraduccional , Ratas Wistar , Pez Cebra
9.
Eur J Pharmacol ; 891: 173723, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159933

RESUMEN

Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Apoptosis/efectos de los fármacos , Benzaldehídos/farmacología , Catecoles/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Complejos Multienzimáticos/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Fibrosis , Glucosa/deficiencia , Masculino , Ratones Endogámicos C57BL , Complejos Multienzimáticos/genética , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Transcriptoma , eIF-2 Quinasa/genética
10.
Acta Pharmacol Sin ; 41(2): 173-180, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31506572

RESUMEN

Microglia-mediated neuroinflammation is a crucial risk factor for neurological disorders. Recently, dopamine receptors have been found to be involved in multiple immunopathological processes and considered as valuable therapeutic targets for inflammation-associated neurologic diseases. In this study we investigated the anti-neuroinflammation effect of isosibiricin, a natural coumarin compound isolated from medicinal plant Murraya exotica. We showed that isosibiricin (10-50 µM) dose-dependently inhibited lipopolysaccharide (LPS)-induced BV-2 microglia activation, evidenced by the decreased expression of inflammatory mediators, including nitrite oxide (NO), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). By using transcriptomics coupled with bioinformatics analysis, we revealed that isosibiricin treatment mainly affect dopamine receptor signalling pathway. We further demonstrated that isosibiricin upregulated the expression of dopamine D1/2 receptors in LPS-treated BV-2 cells, resulting in inhibitory effect on nucleotide binding domain-like receptor protein 3 (NLRP3)/caspase-1 inflammasome pathway. Treatment with dopamine D1/2 receptor antagonists SCH 23390 (1 µM) or sultopride (1 µM) could reverse the inhibitory effects of isosibiricin on NLRP3 expression as well as the cleavages of caspase-1 and IL-1ß. Collectively, this study demonstrates a promising therapeutic strategy for neuroinflammation by targeting dopamine D1/2 receptors.


Asunto(s)
Inflamasomas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Animales , Caspasa 1/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Inflamasomas/metabolismo , Inflamación/patología , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2657-2661, 2019 Jul.
Artículo en Chino | MEDLINE | ID: mdl-31359673

RESUMEN

Target identification is an important prerequisite for the study of medicine action mechanism. Currently,drug target identification is mostly based on various cell models in vitro. However,the growth microenvironment,nutrition metabolism,biological properties as well as functions are quite different between in vitro cell culture and physiological environment in vivo; wherefore,it is a challenging scientific issue to establish an effective method for identifying drug targets in vivo condition. In this study,we successfully prepared a kind of magnetic nanoparticles( MNPs) which can be chemically modified by the hydroxyl structure of natural bioactive compound echinacoside( ECH) via the epoxy group label on the surface of MNPs. Therefore,organ-selective and recoverable nanoscale target-recognizing particles were prepared. We then intravenously injected the ECH-binding MNPs into rats and distributed them to specific organs in vivo. After cell endocytosis,ECH-binding MNPs captured target proteins in situ for further analysis. Based on this method,we discovered several potential target proteins in the spleen lysates for ECH,and preliminarily clarified the immuno-regulation mechanism of ECH. Collectively,our strategy developed a proof-of-concept technology using nanoparticles for in vivo target identification,and also provided a feasible approach for drug target prediction and pharmacological mechanism exploration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita , Medicina Tradicional China , Animales , Endocitosis , Glicósidos/análisis , Magnetismo , Prueba de Estudio Conceptual , Ratas
12.
RSC Adv ; 9(8): 4157-4161, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35520197

RESUMEN

Solid-state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next-generation flexible Li metal batteries with enhanced safety and stability. Nevertheless, the brittleness and inferior room temperature conductivity are major obstacles for practical applications. Herein, for the first time, we have fabricated a flexible lithium ion conductive glass-ceramic fiber by using a melt-spun homogeneous NASICON-type structured Li1.5Al0.5Ge1.5(PO4)3 (LAGP) glass melt and annealed at 825 °C. The annealed samples exhibited a higher lithium ion conductivity than the air-quenched sample due to the presence of a well-crystallized crystal grain in the annealed sample. Meanwhile, the ionic conductivity has shown an inverse relationship with the diameter of annealed LAGP glass-ceramic fibers. The results revealed that the annealed glass-ceramic fiber, with a diameter of 10 µm, resulted in lithium ion conductivity of 8.8 × 103 S cm-1 at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...